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tl;dr: Provably reliable conformal prediction sets (RPS)
 - Pointwise reliability of conformal prediction sets under poisoning
 - Adversaries can manipulate training and calibration data to alter prediction       
   sets by (1) modifying, adding or deleting datapoints, and (2) by flipping labels
 - We propose the first approach towards more reliable prediction sets and 
   derive strong certificates that guarantee reliability under data poisoning

Context

Yan Scholten & Stephan Günnemann
Technical University of Munich

Background: Conformal prediction

Problem

Paper, code, and more

Conformal prediction sets are not pointwise reliable under poisoning attacks,  
where adversaries manipulate both the training and calibration data 

by modifying, adding or deleting datapoints, or by flipping labels.

How can we make conformal prediction sets provably reliable
in the presence of data poisoning?

How to certify reliability?

- Conformal prediction provides prediction sets guaranteed to include 
the ground truth with any user-specified probability

- Machine learning models are susceptible to data poisoning attacks

1. Train classifier 𝑓: 𝑋 → 𝑌 on training set 𝐷𝑡𝑟𝑎𝑖𝑛

2. Compute conformal scores on the calibration set 𝐷𝑐𝑎𝑙𝑖𝑏 
 using a score function 𝑠(𝑥, 𝑦) to measure conformity

3. Compute empirical quantile of conformal scores 𝑆:
𝜏 = 𝑄𝑢𝑎𝑛𝑡 𝛼; 𝑆

 for user-specified significance level 𝛼
4. Given test image 𝑥𝑛+1, construct prediction set

𝒞 x𝑛+1 = {𝑦 ∈ 𝒴 ∶ 𝑠 𝑥𝑛+1, 𝑦 ≥ 𝜏}
 

Test image 𝑥𝑛+1

Our approach yields provably reliable prediction sets even under worst-case 
data poisoning and exchangeability violations described by our threat model

If (𝑥𝑛+1, 𝑦𝑛+1) ∈ 𝐷𝑡𝑒𝑠𝑡 is exchangeable with 𝐷𝑐𝑎𝑙𝑖𝑏 , then

Pr [ 𝑦𝑛+1 ∈ 𝒞 x𝑛+1 ] ≥ 1 − 𝛼

Majority prediction sets against calibration poisoning

For clean datasets of independent datapoints, the majority prediction set
achieves marginal coverage: Pr [ 𝑦𝑛+1 ∈ 𝒞𝑀 x𝑛+1 ] ≥ 1 − 𝛼

- Assume worst-case scenario: Each perturbed datapoint changes the prediction
  to the worst-case for at most one partition 
- Since all votes are discrete, we can directly quantify the worst-case scores,
  worst-case quantiles, and worst-case counts in the majority prediction set 𝒞𝑀 

Reliability under calibration poisoning
Empirical coverage of 90.2% and average set size of 0.94 (𝑘𝑐 = 22)

Reliability under training poisoning

empirical coverage of 90.7%
and average set size of 3.18

Reliability under training & calibration poisoning

Experimental evaluation
Setting: ResNet18 on CIFAR10, 𝛼 = 0.1

Average set size and empirical coverage

𝒞 x𝑛+1  = 𝐶𝑃 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑐𝑎𝑙𝑖𝑏 , 𝑥𝑛+1 = {𝑠𝑞𝑢𝑖𝑟𝑟𝑒𝑙}

෩𝒞 x𝑛+1 = 𝐶𝑃(෩𝐷𝑡𝑟𝑎𝑖𝑛, ෩𝐷𝑐𝑎𝑙𝑖𝑏 , 𝑥𝑛+1) = {𝑚𝑎𝑟𝑚𝑜𝑡, 𝑑𝑜𝑔}

Prediction set using clean data

Prediction set using perturbed data

Marginal coverage guarantee
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1. Split the calibration data into 𝑘𝑐 disjoint partitions
2. Compute conformal prediction sets 𝒞𝑖 x𝑛+1  using each calibration partition
3. Construct a majority prediction set 𝒞𝑀 𝑥𝑛+1  using quantile function Ƹ𝜏 𝛼

 of the Binomial distribution 𝐵𝑖𝑛 𝑘𝑐 , 1 − 𝛼

𝑃𝟏

𝑃𝟐

⋮
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We are interested in certifying subset relationships and denote prediction sets

- coverage reliable, if we can guarantee 𝐶 𝑥𝑛+1 ⊆ ሚ𝐶 𝑥𝑛+1 ,
- size reliable, if we can guarantee 𝐶 𝑥𝑛+1 ⊇ ሚ𝐶 𝑥𝑛+1 , and
- robust, if we can guarantee both “⊆” and “⊇”.

How to define reliability?

1. Split the training data into 𝑘𝑡 disjoint partitions

2. Train 𝑘𝑡 classifiers 𝑓 𝑖  separately on each partition

3. Construct a voting function 𝜋𝑦 𝑥 =
1

𝑘𝑡
σ𝑖=1

𝑘𝑡 𝕀 {𝑓 𝑖 𝑥 = 𝑦}

4. Construct a score function by smoothing the voting function:
𝑠 𝑥, 𝑦 = 𝑒𝜋𝑦 𝑥 /(σ𝑖=1

𝐾 𝑒𝜋𝑖(𝑥))

Smoothed score functions against training poisoning

Additional softmax to resolve ties between scores deterministically
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Empirical coverage of 90.7% and average set size of 3.18 (𝑘𝑡 = 100)

Empirical coverage of 92% and avg. set size of 3.41 (𝑘𝑡 = 100, 𝑘𝑐 = 40)

𝐷𝑐𝑎𝑙𝑖𝑏

𝒞𝑀 𝑥𝑛+1 = 𝑦 ∶ 𝑆 𝑦 > Ƹ𝜏(𝛼)

𝒞1 x𝑛+1 = {𝑦 ∶ 𝑠 𝑥𝑛+1, 𝑦 ≥ 𝜏1}

𝒞2 x𝑛+1 = {𝑦 ∶ 𝑠 𝑥𝑛+1, 𝑦 ≥ 𝜏2}

𝒞𝑘𝑐
x𝑛+1 = {𝑦 ∶ 𝑠 𝑥𝑛+1, 𝑦 ≥ 𝜏𝑘𝑐

}

⋮
𝑆(𝑦) ≜ ෍

𝑖=1

𝑘𝑐

𝕀 { 𝑦 ∈ 𝒞𝑖 x𝑛+1 }
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