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Context: Large Language Models

Widespread deployment of LLMs requires careful evaluations
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Background: Evaluating LLMs

Current evaluations rely on greedy decoding
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Problem: Probabilistic generations

Most practical applications LLMs generate outputs probabilistically
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Research question: Are deterministic evaluations adequate
for assessing LLMs in sensitive applications?
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Solution: Probabilistic evaluation framework T

Assess the LLM’s performance using Monte-Carlo sampling

1. Giveninput x, sample responses from the model: Distribution over
responses
Rl' ""RTl ~ 7'[9(3()

2. Measure information in each sample:

X; = h(R)) -
3. Compute probabilistic metric: roTy T3
M(Xy, ..., X)
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Case-study: Machine unlearning for LLMs T

NPO-Unlearned Phi evaluated on TOFU query

X Greedy decoding

Density

20%
Leakage percentage

40%

Key takeaway: Our probabilistic perspective reveals
significant information leakage after unlearning
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Tl

Case-study: Machine unlearning for LLMs

Comparing unlearning methods on TOFU under sampling

Unlearning methods

B Gradient ascent
1 Preference optimization

Density
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Leakage percentage
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Improving unlearning in probabilistic settings

Reducing leakage probability via entropy optimization

Existing unlearning loss Minimize entropy
for unlearning for forget data
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Improving unlearning in probabilistic settings

Preventing tail events using adaptive temperature scaling
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Tl

Improving unlearning in probabilistic settings

Unlearned Phi evaluated on TOFU query

NPO-Unlearned model under sampling Our method under sampling
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Our approach significantly reduces leakage under sampling

Yan Scholten A Probabilistic Perspective on Unlearning and Alignment for Large Language Models 10



Bounding information leakage

Confidence bounds on information leakage

Harry Potter Q&A dataset

B greedy
I probabilistic

Ratio of questions
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Bounding information leakage T

Confidence bounds on information leakage

Expectation bounds Standard deviation bounds
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Beyond unlearning: Alignment experiments T

Vicuna evaluated on toxic query of JailbreakBench

X Greedy decoding

Density

25% 50% 75%  100%
Toxicity

Key takeaway: Alignment under deterministic evaluations does not
imply alignment under probabilistic evaluations
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tl:dr: Probabilistic evaluations of LLMs L

Deterministic evaluations are inadequate for assessing
sensitive applications since they fall shortin capturing
risks associated with probabilistic outputs

Visit our poster: Hall 3 Poster #2713 @ 3 pm
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