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tl:dr: Probabilistic evaluation framework for LLMs
- Novel probabilistic perspective on LLM evaluations

- First formal evaluation framework to directly assess the output distribution
- Novel unlearning loss to enhance unlearning in probabilistic settings

Context

- Large Language Models (LLMs) are widely employed across various applications
- In most practical applications LLMs generate outputs probabilistically
- Previous evaluations predominately rely on deterministic point estimates

Problem

Deterministic evaluations are inadequate for assessing sensitive applications
since they fall short in capturing risks associated with probabilistic outputs

Deterministic evaluations might indicate successful unlearning:
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Whereas probabilistic evaluations reveal significant information leakage:
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Solution: Probabilistic evaluation framework

Assess the LLM’s performance using Monte-Carlo sampling:

1. Given input x, sample n answers Y, ..., Y,, from the LLM’s output distribution
2. Compute existing evaluation metric h to measure information in each sample
X; = h(1;)

3. Compute probabilistic metrics M (X, ..., X,,) to evaluate the LLM

A Probabilistic Perspective on Unlearning and Alighment

for Large Language Models

Yan Scholten, Stephan Ginnemann, Leo Schwinn

Case-study on machine unlearning for LLMs
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Key takeaway: Our probabilistic perspective reveals
significant information leakage after unlearning

How can we improve unlearning in probabilistic settings?
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Entropy optimization: 0.5
- Minimize unlearning loss Ly; (8) and entropy loss on >
forget data Dy, while stabilizing entropy on retain data A 0
Dpr using an antagonizin%entropy loss g B NPO
- Entropy loss: £g(x,y) = — P Hmeg(y | Yi_q, s Y1, X)) 3 Ours
. %
with H(q) = — ;2 ¢; logg; %200 0.2 0.4
ROUGE-L

Bounding information leakage with high probability

Confidence bounds on information leakage based on DKW-inequality

Standard dev. bounds

Expectation bounds
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Previous alighment evaluations do not
capture practical risks
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Vicuna on JailbreakBench
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Mistral on JailbreakBench
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Key takeaway: Alignment under
deterministic evaluations does not imply
alignment under probabilistic evaluations
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