A Probabilistic Perspective on Unlearning and Alignment for Large Language Models

Yan Scholten, Stephan Günnemann, Leo Schwinn

tl;dr: Probabilistic evaluation framework for LLMs

- Novel probabilistic perspective on LLM evaluations
- First formal evaluation framework to directly assess the output distribution
- Novel unlearning loss to enhance unlearning in probabilistic settings

Context

- Large Language Models (LLMs) are widely employed across various applications
- In most practical applications LLMs generate outputs probabilistically
- Previous evaluations predominately rely on deterministic point estimates

Problem

Deterministic evaluations are inadequate for assessing sensitive applications since they fall short in capturing risks associated with probabilistic outputs

Deterministic evaluations might indicate successful unlearning:

Whereas probabilistic evaluations reveal significant information leakage:

Solution: Probabilistic evaluation framework

Assess the LLM's performance using Monte-Carlo sampling:

- 1. Given input x, sample n answers Y_1, \dots, Y_n from the LLM's output distribution
- 2. Compute existing evaluation metric h to measure information in each sample $X_i = h(Y_i)$
- 3. Compute probabilistic metrics $M(X_1, ..., X_n)$ to evaluate the LLM

Case-study on machine unlearning for LLMs

Key takeaway: Our probabilistic perspective reveals significant information leakage after unlearning

How can we improve unlearning in probabilistic settings?

Entropy optimization:

- Minimize unlearning loss $\mathcal{L}_{UL}(\theta)$ and entropy loss on forget data \mathcal{D}_{FG} while stabilizing entropy on retain data \mathcal{D}_{RT} using an antagonizing entropy loss
- Entropy loss: $\ell_{\theta}(x, y) = \frac{1}{m} \sum_{t=1}^{m} H(\pi_{\theta}(y | y_{t-1}, ..., y_{1}, x))$ with $H(q) = -\sum_{i=1}^{|V|} q_{i} \log q_{i}$

Bounding information leakage with high probability

Confidence bounds on information leakage based on DKW-inequality

Previous alignment evaluations do not capture practical risks

Phi on JailbreakBench

Vicuna on JailbreakBench

Mistral on JailbreakBench

Key takeaway: Alignment under deterministic evaluations does not imply alignment under probabilistic evaluations

Paper, code, and more

