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ABSTRACT

Conformal prediction provides model-agnostic and distribution-free uncertainty
quantification through prediction sets that are guaranteed to include the ground
truth with any user-specified probability. Yet, conformal prediction is not reliable
under poisoning attacks where adversaries manipulate both training and calibra-
tion data, which can significantly alter prediction sets in practice. As a solution,
we propose reliable prediction sets (RPS): the first efficient method for construct-
ing conformal prediction sets with provable reliability guarantees under poisoning.
To ensure reliability under training poisoning, we introduce smoothed score func-
tions that reliably aggregate predictions of classifiers trained on distinct partitions
of the training data. To ensure reliability under calibration poisoning, we construct
multiple prediction sets, each calibrated on distinct subsets of the calibration data.
We then aggregate them into a majority prediction set, which includes a class only
if it appears in a majority of the individual sets. Both proposed aggregations mit-
igate the influence of datapoints in the training and calibration data on the final
prediction set. We experimentally validate our approach on image classification
tasks, achieving strong reliability while maintaining utility and preserving cov-
erage on clean data. Overall, our approach represents an important step towards
more trustworthy uncertainty quantification in the presence of data poisoning.

1 INTRODUCTION

Conformal prediction has emerged as a powerful framework for model-agnostic and distribution-free
uncertainty quantification in machine learning. By constructing prediction sets calibrated on hold-
out calibration data, it can transform any existing black-box classifier into a predictor with formal
coverage guarantees, ensuring that its prediction sets cover the ground truth with any user-specified
probability (Angelopoulos & Bates, 2021). This makes conformal prediction highly relevant for un-
certainty quantification in safety-critical applications such as medical diagnosis (Vazquez & Facelli,
2022), autonomous driving (Lindemann et al., 2023), and flood forecasting (Auer et al., 2023).

However in practice, noise, incomplete data or adversarial perturbations can lead to unreliable pre-
diction sets (Liu et al., 2024). In particular data poisoning – where adversaries modify the training
or calibration data (e.g. during data labeling) – can significantly alter the prediction sets, resulting
in overly conservative or empty sets (Li et al., 2024). This vulnerability can undermine the practical
utility of conformal prediction in safety-critical applications, raising the research question:

How can we make conformal prediction sets provably reliable in the presence of data poisoning?

As a solution, we propose reliable prediction sets (RPS): the first efficient method for constructing
prediction sets more reliable under data poisoning. Our approach consists of two key components
(Figure 1): First (i), we introduce smoothed score functions that reliably aggregate predictions from
classifiers trained on distinct partitions of the training data, improving reliability under training poi-
soning. Second (ii), we calibrate multiple prediction sets on disjoint subsets of the calibration data
and construct a majority prediction set that includes classes only when a majority of the independent
prediction sets agree, improving reliability under calibration poisoning. Using both strategies (i) and
(ii), RPS effectively reduces the influence of datapoints during training and calibration.
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(i) Reliable CP under training poisoning (ii) Reliable CP under calibration poisoning
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Figure 1: Conformal prediction (CP) is not reliable under poisoning (orange) of training and calibra-
tion data, undermining its practical utility in safety-critical applications. As a solution, we propose
reliable prediction sets (RPS): A novel approach for constructing more reliable prediction sets. We
(i) aggregate predictions of classifiers trained on distinct partitions, and (ii) merge multiple predic-
tion sets Ci(x)={y : s(x, y)≥ τi} calibrated on separate partitions into a majority prediction set that
includes classes only if a majority of the prediction sets Ci agree. This way RPS reduces the influ-
ence of datapoints while preserving the coverage guarantee of conformal prediction on clean data.

We further derive certificates, i.e. provable guarantees for the reliability of RPS under worst-case poi-
soning. We experimentally validate the effectiveness of our approach on image classification tasks,
demonstrating strong reliability under worst-case poisoning while maintaining utility and empiri-
cally preserving the coverage guarantee of prediction sets on clean data. Our main contributions are:

• We propose reliable prediction sets (RPS) – the first scalable and efficient method for making
conformal prediction more reliable under training and calibration poisoning.

• We derive novel certificates that guarantee the reliability of RPS under worst-case data poisoning
attacks, including guarantees against label flipping attacks.

• We exhaustively evaluate our method and verify our theorems on image classification tasks.

2 RELATED WORK

Prediction set ensembles. Ensembles of prediction sets are studied in the uncertainty set literature
(Cherubin, 2019; Solari & Djordjilović, 2022; Gasparin & Ramdas, 2024) beyond machine learn-
ing, e.g. to reduce the effect of randomness. Our work instead proposes a method to improve the
reliability of conformal prediction under worst-case training and calibration poisoning.

Conformal prediction under evasion. Most works regarding reliable conformal prediction focus
on evasion threat models, i.e. adversarial perturbations of the test data. They typically build upon
randomized smoothing (Cohen et al., 2019) to certify robustness against evasion attacks (Gendler
et al., 2022; Yan et al., 2024; Zargarbashi et al., 2024), or use neural network-specific verification
(Jeary et al., 2024). Ghosh et al. (2023) introduce a probabilistic notion as an alternative to worst-
case evasion attacks. Unlike prior work on evasion, we consider poisoning threat models.

Conformal prediction under poisoning. Although there are already poisoning attacks against
conformal prediction (Li et al., 2024), the few attempts to improve its reliability focus on other
notions of reliability: Most works only consider calibration poisoning where adversaries aim to
reduce coverage by removing classes from prediction sets (Zargarbashi et al., 2024; Park et al., 2023;
Kang et al., 2024). Others study calibration poisoning empirically (Einbinder et al., 2022), under
specific label noise (Penso & Goldberger, 2024), or consider distribution shifts between calibration
and test data (Cauchois et al., 2020). Overall, none of the existing approaches considers our threat
model where adversaries can poison both training and calibration data with the goal to either add or
remove classes from prediction sets.

Robustness certification against data poisoning. Most certification techniques for robust classi-
fication under poisoning consider other threat models, specific training techniques or architectures
(Rosenfeld et al., 2020; Tian et al., 2023; Sosnin et al., 2024). The strongest guarantees also partition
the training data and aggregate predictions of classifiers trained on each partition (Levine & Feizi,
2021; Wang et al., 2022; Rezaei et al., 2023). However, all of the prior works only guarantee robust
classification and are not directly applicable to certify conformal prediction since prediction sets (1)
contain multiple classes, and (2) can be manipulated via poisoning during training and calibration.
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3 BACKGROUND AND PRELIMINARIES

We focus on classification tasks defined on an input space X = Rd for a given finite set of classes
Y = {1, . . . ,K}. We model prediction set predictors as functions C : X → Y ⊆ Y , which provide
prediction sets as subsets C(x) ⊆ Y of the classes Y for any given datapoint x ∈ X .

Exchangeability. Conformal prediction is a model-agnostic and distribution-free method for con-
structing prediction sets. It only requires that the datapoints are exchangegable, which means that
their joint distribution is invariant under permutations of the datapoints. This is more general than
an i.i.d.-assumption, since it allows for dependencies between datapoints as long as their distribution
remains unchanged when the order is shuffled. In this paper, we adopt the standard assumption (e.g.
in image classification) that datapoints are independent and identically distributed (i.i.d.), which
implies exchangeability. Specifically, we assume three datasets sampled i.i.d. from the same distri-
bution D over X × Y: training set Dtrain, calibration set Dcalib={(xi, yi)}ni=1 and test set Dtest.

Conformal prediction. Conformal prediction is a method for turning a given black-box classifier
f : X → Y into a prediction set predictor. We study split conformal prediction (Papadopoulos et al.,
2002; Lei et al., 2018), the most widely-used variation of conformal prediction in machine learning.
First we train a classifier f(x) on the training set and use a score function s(x, y) that measures con-
formity between samples x and classes y using classifier f . For example, homogeneous prediction
sets (HPS) use class probabilities s(x, y)=fy(x) (Sadinle et al., 2019). Using a score function s we
then compute conformal scores S={s(xi, yi)}ni=1 for samples of the calibration set Dcalib. Finally,
one can construct prediction sets with the following coverage guarantee (Vovk et al., 1999; 2005):
Theorem 1. Given user-specified coverage probability 1− α ∈ (0, 1), test sample (xn+1, yn+1) ∈
Dtest exchangeable withDcalib, and a score function s, we can construct the following prediction set

C(xn+1) = {y ∈ Y : s(xn+1, y) ≥ τ}
which fulfills the following marginal coverage guarantee

Pr[yn+1 ∈ C(xn+1)] ≥ 1− α

for τ = Quant(αn;S), which is the αn-quantile of the conformal scores S for a finite-sample
corrected coverage level αn = ⌈(n+1)(1−α)⌉

n .

For a more detailed introduction to conformal prediction we refer to Angelopoulos & Bates (2021).

4 DESIDERATA FOR RELIABLE CONFORMAL PREDICTION

First we want to outline the desired properties reliable conformal prediction should exhibit, setting
clear goals for how uncertainty should be captured by prediction sets under data poisoning.

Data poisoning. While exchangeability may hold theoretically for the data distribution D, the
labeled data Dl = (Dtrain,Dcalib) can be poisoned in practice where noise, incomplete data or
adversaries are present (for example during data labeling), violating exchangeability. We formally
model this threat model, i.e. the strength of poisoning attacks, as a ball centered around labeled data:

Brt,rc(Dl) =
{
D̃l | δ(D̃train,Dtrain) ≤ rt, δ(D̃calib,Dcalib) ≤ rc

}
(1)

where δ is a distance metric between datasets, and rt, rc are the radii for training and calibration
sets, respectively. Specifically, we define δ as the number of inserted or deleted datapoints and label
flips, modelling feature modifications as two perturbations (deletion and insertion): δ(D1,D2) =
|D1 ⊖ D2| − |F(D1,D2)| where A ⊖ B = (A \ B) ∪ (B \ A) is the symmetric set difference
between two sets A and B, |S| denotes the cardinality of a set S, and F(D1,D2) represents the set
of datapoints with label flips F(D1,D2)={x | ∃ y1 : (x, y1)∈D1 \ D2,∃ y2 : (x, y2)∈D2 \ D1}.
Note that we count label flips only once, and feature perturbations can be of arbitrary magnitude.

Reliability under data poisoning. Given a datapoint x ∈ X and a prediction set C(x) ⊆ Y , we
define reliability of conformal prediction sets under data poisoning as follows:
Definition 1 (Reliability). We assume that reliability is compromised if adversaries can remove or
add a single class from or to the prediction set C(x) under our threat model (Equation 1). Specif-
ically, we call prediction sets coverage reliable if adversaries cannot compromise coverage by re-
moving classes from the prediction set C(x), and size reliable if adversaries cannot inflate prediction
set C(x) by adding classes. We further denote coverage and size reliable prediction sets as robust.

3



Under review.

Accordingly, we propose the following novel desiderata for reliable conformal prediction:

Desiderata for reliable conformal prediction sets under data poisoning

I: Reliable prediction sets must provide 1− α marginal coverage for clean data.
II: Reliable prediction sets must be small for clean data.

III: Reliable conformal prediction must provably ensure reliability of prediction sets (Defini-
tion 1) under feature poisoning and label flipping (Equation 1), up to a radius that meets
the application’s needs and safety requirements.

IV: Reliable prediction sets must be more stable for larger training and calibration sets.
V: Reliable prediction sets must be computationally efficient, scalable, and reproducible.

While Desideratum I requires that prediction sets fulfil the coverage guarantee, Desideratum II en-
sures small prediction sets, and together they prevent that reliability can be achieved trivially by
predicting empty or full sets. Desideratum III ensures that reliability must be certifiable, i.e. a prov-
able guarantee under worst-case poisoning. Specifically, adversaries must not add or remove classes.
Desideratum VI requires that reliability improves if more data is available since practical risk in-
creases with more data. Finally, Desideratum V ensures efficiency for practical deployment, where
reproducibility requires that the sets do not differ for the same input, ensuring stability on clean data.

5 RELIABLE CONFORMAL PREDICTION SETS

Guided by our five desiderata for reliable conformal prediction we introduce reliable conformal
prediction sets (RPS): the first method that makes conformal prediction provably more reliable
under both training and calibration poisoning (Figure 1). The first component of RPS (i) reliably
aggregates classifiers trained on kt disjoint partitions of the training data. The second component
of RPS (ii) constructs reliable prediction sets by merging prediction sets calibrated separately on
kc disjoint partitions of the calibration data. Intuitively, while larger kt increases reliability against
training poisoning, larger kc increases reliability against calibration poisoning. We provide detailed
instructions for our reliable conformal prediction sets in Algorithm 1 and Algorithm 2.

5.1 CONFORMAL SCORE FUNCTIONS RELIABLE UNDER TRAINING DATA POISONING

First, our goal is to derive a conformal score function that is reliable under poisoning of training
data. This is challenging since the score function also has to quantify agreement between samples
and classes, and maintain exchangeability of conformal scores between calibration and test data.
To overcome this challenge we propose to (1) partition the training data into kt disjoint sets, (2)
train separate classifiers on each partition, and (3) design a score function that counts the number of
classifiers voting for a class y given sample x. Since deleting or inserting one datapoint from or into
the training set only affects a single partition and thus a single classifier, this procedure effectively
reduces the influence of datapoints on the score function.

Training data partitioning. To prevent that simple reordering of the datasets affects all partitions
simultaneously, we have to partition the training data in a way that is invariant to its order. To achieve
this we assign datapoints to partitions by using a hash function directly defined on x. For example
for images, we hash the sum of their pixel values. This technique that has been previously shown to
induce certifiable robustness in the context of image classification (Levine & Feizi, 2021). Given a
hash function h we define the i-th partition of the training set as

P t
i = {(xj , yj) ∈ Dtrain : h(xj) ≡ i (mod kt)} .

Then we deterministically train kt classifiers fi : X → Y on all partitions P t
1 , . . . , P

t
kt

separately.

Smoothed score function. Now we define our novel score function that measures agreement be-
tween a sample x and class y by counting the number of classifiers fi voting for class y given x:

s(x, y) =
eπy(x)∑K
i=1 e

πi(x)
with πy(x) =

1

kt

kt∑
i=1

1{fi(x) = y} (2)

where πy(x) is the percentage of classifiers voting for class y given sample x. Note that we introduce
the additional softmax over class distribution πy(x) to fulfill Desideratum II, since the softmax
prevents overly large prediction sets in practice (see Section 7).
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Algorithm 1 Reliable conformal score function

Input: Dtrain, kt, training algo. T
1: Split Dtrain into kt disjoint partitions P t

i

P t
i = {(xj , yj) ∈ Dtrain : h(xj) ≡ i (mod kt)}

2: for i = 1 to kt do
3: Train classifier fi = T (P t

i ) on partition P t
i

4: Construct the voting function
πy(x) =

1
kt

∑kt
i=1 1{fi(x) = y}

5: Smooth the voting function
s(x, y) = eπy(x)/(

∑K
i=1 e

πi(x))
Output: Reliable conformal score function s

Algorithm 2 Reliable conformal prediction sets

Input: Dcalib, kc, s, αn, xn+1

1: Split Dcalib into kc disjoint partitions P c
i

P c
i = {(xj , yj) ∈ Dcalib : h(xj) ≡ i (mod kc)}

2: for i = 1 to kc do
3: Compute scores Si={s(xj , yj)}(xj ,yj)∈Pc

i
4: Compute αni -quantile τi of scores Si

5: Construct prediction set for quantile τi
Ci(xn+1) = {y : s(xn+1, y) ≥ τi}

6: Construct majority vote prediction set
CM (xn+1)={y :

∑kc
i=1 1{y∈Ci(xn+1)}>τ̂}

Output: Reliable conformal prediction set CM

For any function to be considered a valid score function for conformal prediction it has to maintain
exchangeability of conformal scores between calibration and test data (Angelopoulos et al., 2021).
Lemma 1. The smoothed score function in Equation 2 is a valid conformal score function.

Proof. We use one function to score all points independent of other datapoints and which dataset
they belong to (and where in the dataset). Thus, given exchangeable data, scores computed by our
smoothed score function remain exchangeable. Therefore s of Equation 2 is a valid score function. □

Lemma 1 implies that the marginal coverage guarantee (Theorem 1) holds on clean data when using
our smoothed score function for conformal prediction (Desideratum I). Intuitively, our score func-
tion quantifies uncertainty by the number of votes of multiple classifiers trained on disjoint partitions
instead of the logits of classifiers. As long as the classifiers are trained on isolated sets without access
to other partitions we can reduce the influence of datapoints on the conformal scores. We summarize
instructions for the smoothed score function in Algorithm 1.

5.2 MAJORITY PREDICTION SETS RELIABLE UNDER CALIBRATION DATA POISONING

Now we derive prediction sets reliable against calibration poisoning. This is challenging since the
prediction sets must also achieve marginal coverage on clean data (Desideratum I) without inflat-
ing set size (Desideratum II). We propose to (1) partition the calibration data into kc disjoint sets,
(2) compute separate prediction sets based on the conformal scores on each partition, and to (3)
merge the resulting prediction sets via majority voting. This improves reliability since adversaries
have to poison multiple partitions to alter the majority vote. We further show that such majority
prediction sets achieve marginal coverage, and do not grow too much in size in practice (Section 7).

Calibration data partitioning. We partition the calibration data as follows: Given a hash function h
we define the i-th partition of the calibration set as P c

i = {(xj , yj) ∈ Dcalib : h(xj) ≡ i (mod kc)}.
We then use a (potentially reliable) conformal score function s to compute the conformal scores
Si={s(xj , yj)}(xj ,yj)∈P c

i
on each partition P c

i . We can then determine the αni -quantiles of the
separate conformal scores, τi = Quant(αni

;Si), where ni is the size of the i-th partition, ni = |Ci|.
Majority prediction sets. Now we propose our novel prediction sets reliable under calibration
poisoning. Given a new datapoint xn+1 ∈ Dtest we construct kc prediction sets for each partition
as Ci(xn+1) = {y : s(xn+1, y) ≥ τi}. We then construct a prediction set composed of all classes
that appear in the majority of independent prediction sets:

CM (xn+1) =

{
y :

kc∑
i=1

1{y ∈ Ci(xn+1)} > τ̂

}
(3)

with τ̂=max {x ∈ [kc] : F (x) ≤ α}, where F is the CDF of the Binomial distribution Bin(kc, 1−α)
and [kc] = {0, . . . , kc}. Note that for kc = 1 we have τ̂ = 0 and thus the majority prediction
sets amount to standard conformal prediction sets, CM (xn+1) = C1(xn+1). We summarize the
construction of our majority prediction sets in Algorithm 2.

Interestingly, such majority voting is also used in the context of uncertainty sets (Gasparin & Ram-
das, 2024), but their construction comes without reliability guarantees and additionally violates the
coverage guarantee (see discussion in Appendix D). In contrast, we show that our majority predic-
tion sets CM achieve marginal coverage on clean data:
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Theorem 2. Given coverage probability 1−α∈ (0, 1), test sample (xn+1, yn+1)∈Dtest, and a
conformal score function s, the majority prediction set (Equation 3) constructed on a calibration
set of independent datapoints achieves marginal coverage on clean data:

Pr[yn+1 ∈ CM (xn+1)] ≥ 1− α (4)

Proof in Appendix D. Notably, Theorem 2 guarantees marginal coverage for any conformal score
function. This holds especially for our smoothed score function (Algorithm 1). As a result, majority
prediction sets based on the smoothed score function achieve marginal coverage (Desideratum II).

6 PROVABLE GUARANTEES FOR RELIABLE CONFORMAL PREDICTION SETS

After introducing reliable prediction sets (RPS), we derive certificates for their reliability as defined
in Definition 1 and required by Desideratum III. We consider the threat model Brt,rc(Dl) where ad-
versaries can insert, delete and flip labels for up to rt training and rc calibration points (Section 3). In
the following we treat training poisoning, then calibration poisoning, and finally poisoning of both.

6.1 GUARANTEES FOR SMOOTHED SCORING FUNCTION UNDER TRAINING POISONING

We begin with the reliability of the smoothed scoring function under training poisoning (rt>0,
rc=0). Let C(xn+1)={y ∈Y : s(xn+1, y)≥ τ} be a prediction set for a new test point xn+1 derived
using conformal prediction (Section 3) under the clean dataset Dl with smoothed score function s.
Our goal is to bound the prediction set C̃(xn+1) derived under any poisoned dataset D̃l ∈ Brt,rc(Dl).
This requires that we bound score function s and quantile τ . We start with the score function:

Lemma 2. We can upper bound the score function for any D̃l ∈ Brt,rc(Dl) as follows:

s(x, y) = max
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (5)

Proof in Appendix E. Although optimizing softmax func-
tions typically leads to non-convex optimization problems,
the problem in (5) reduces to a discrete optimization prob-
lem that can be solved efficiently (Desideratum V). We
derive algorithms computing lower and upper bounds in
rt steps, presenting the upper bound in Algorithm 3. In-
tuitively, in each step we greedily redistribute 1

kt
probability

mass from the current class ŷ ̸=y with the largest probability
mass to the target class y. We repeat this process until we
have redistributed the entire probability mass rt

kt
. We present

the lower bound algorithm and proofs in Appendix E.

Algorithm 3 Greedy algorithm for upper
bounding the smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: ŷ = argmaxŷ ̸=y πŷ

4: πŷ ← min(max(πŷ − 1/kt, 0), 1)
5: πy ← min(max(πy + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Given lower and upper bounds zi = s(xi, yi) and zi = s(xi, yi) on the conformal scores for all
points (xi, yi) ∈ Dcalib in the calibration set, we can directly determine the worst-case quantiles:

τ = Quant(αn; {zi}ni=1) τ = Quant(αn; {zi}ni=1)

Finally we need to identify (1) the class within the prediction set that received the fewest votes from
the classifiers fi and (2) the class outside the prediction set that got most votes from the classifiers:

y = argmin
y∈C(xn+1)

πy(x) y = argmax
y/∈C(xn+1)

πy(x)

Then we can provide the following guarantees (Proof in Appendix E):

Theorem 3. Given rc=0, the conformal prediction set C̃(xn+1) derived with the smoothed score
function under any poisoned dataset D̃l∈Brt,rc(Dl) is coverage reliable, i.e. C̃(xn+1) ⊇ C(xn+1),
if s

(
x, y

)
≥ τ , and size reliable, i.e. C̃(xn+1) ⊆ C(xn+1), if s (x, y) < τ .

Intuitively, if class y cannot be removed from C(xn+1) (y added), adversaries cannot remove (add)
other classes and thus the prediction sets are coverage (size) reliable.
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6.2 GUARANTEES FOR MAJORITY PREDICTION SETS UNDER CALIBRATION POISONING

Now we analyze reliability of majority prediction sets under calibration poisoning (rt = 0,rc > 0).
Let CM (xn+1) be the majority prediction set for a new test point xn+1 derived under the clean
dataset Dl using any deterministic conformal score function s. Intuitively, if adversaries cannot
remove (add) a class from the majority prediction set by removing (adding) it from (to) rc individual
prediction sets, the majority prediction set remains coverage (size) reliable even in the worst case.
This is since adversaries can perturb at most rc calibration partitions. To determine if adversaries can
remove or add classes, we have to count minimum and maximum support

∑kc

i=1 1{y ∈ Ci(xn+1)}
for classes in and outside of the majority set:

m = min
y∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)} m = max
y/∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)}

Using each support we can provide the following guarantees (Proof in Appendix E):

Theorem 4. Given rt=0 and deterministic score function s, the majority prediction set C̃M (xn+1)

derived under any dataset D̃l ∈ Brt,rc(Dl) is coverage reliable, i.e. C̃M (xn+1) ⊇ CM (xn+1), if
m − rc > τ̂ , and size reliable, i.e. C̃M (xn+1) ⊆ CM (xn+1), if m + rc ≤ τ̂ , provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Note that the last condition ensures that the calibration partitions are large enough such that worst-
case adversaries cannot delete datapoints to prevent us from computing the majority prediction sets.

6.3 PROVABLE RELIABILITY GUARANTEES FOR RPS UNDER GENERAL DATA POISONING

Finally, we consider poisoning of training and calibration data (rt > 0, rc > 0).

Coverage reliability. To ensure coverage reliability we have to show that all classes y ∈CM are
guaranteed to be in the majority prediction set under worst-case poisoning. The majority prediction
set CM contains a class y only if it appears in a majority of τ̂ individual prediction sets Ci. Under
calibration poisoning, adversaries can remove classes from rc individual prediction sets. Intuitively,
the number of prediction sets reliable under training poisoning βy must be large enough such that
even under calibration poisoning, the number of prediction sets containing the class is still larger
than the threshold, βy − rc > τ̂ . This leads to the following guarantee (Proof in Appendix E):
Theorem 5. Let βy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc

} for which we can
guarantee y ∈ Ci under rt poisoned training datapoints. If βy − rc > τ̂ for all y ∈ CM (xn+1) then
the majority prediction set is coverage reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that
the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Size reliability. To ensure size reliability we have to show that all classes y /∈ CM are guaranteed
to stay outside of the majority prediction set under worst-case poisoning. The majority prediction
set CM does not contain a class y if it appears in less than or equal to τ̂ individual prediction sets
Ci. Under calibration poisoning, adversaries can add classes to rc prediction sets in the worst-case.
Intuitively, if we can guarantee that γy prediction sets Ci do not contain the class y under training
poisoning, at most kc − γy prediction sets contain the class under worst-case training poisoning.
This number of prediction sets containing the class in the worst-case must be small enough such that
even if adversaries add the class to rc prediction sets, the majority prediction set does not contain
the class, kc − γy + rc ≤ τ̂ . This leads to the following guarantee (Proof in Appendix E):
Theorem 6. Let γy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc

} for which we can
guarantee y ̸∈ Ci under rt poisoned training datapoints. If kc − γy + rc ≤ τ for all y /∈ CM (xn+1)

then the majority prediction set is size reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Note that we can efficiently compute numbers βy and γy as described in Subsection 6.1 by comput-
ing the worst-case quantiles and verifying s(x, y) < τ and s(x, y) < τ , respectively. Our overall
certification approach is efficient in practice (Desideratum V) as we discuss in Appendix E and
experimentally demonstrate in the next section.
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7 EXPERIMENTAL EVALUATION

In this section we evaluate our reliabe prediction sets and their worst-case guarantees, demonstrating
their effectiveness in analyzing and improving reliability of conformal prediction under poisoning.
We compare three settings (calibration poisoning, training poisoning, and poisoning of both) by
computing the following prediction sets: (a) majority prediction sets merging multiple homogeneous
prediction sets calibrated on each partition, (b) conformal prediction sets using our smoothed score
function, and (c) majority prediction sets using our smoothed score function.

Datasets and models. We train ResNet18, ResNet50 and ResNet101 models (He et al., 2016) on
SVHN (Netzer et al., 2011), CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). The datasets con-
tain images with 3 channels of size 32x32, categorized into 10, 10 and 100 classes. We show results
for ResNet18 on CIFAR10 and coverage level α=0.1 here and additional results in Appendix B.

Experimental setup. We randomly select 1,000 images of the test set for calibration and use the
remaining 9,000 datapoints for testing. To account for randomness in training and calibration set
sampling we train 5 classifiers with different initializations and validate each of them on 5 different
calibration splits. We report mean and standard deviation (shaded areas in the plots). We refer to
Appendix A for the full experimental setup including detailed reproducibility instructions.

Evaluation metrics. We report three reliability ratios: The ratios of test datapoints whose prediction
sets are, according to our worst-case analysis, coverage reliable (classes cannot be removed), size
reliable (classes cannot be added), or robust (classes cannot removed or added). Empirical coverage
refers to the ratio of datapoints whose prediction sets cover the ground truth label of the test set. We
also report the average size of the prediction sets computed on the test set.
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Figure 2: Worst-case reliability guarantees across three scenarios: (a) poisoning of the calibration
data, (b) poisoning of the training data, and (c) poisoning of both datasets. Our guarantees against
coverage attacks are stronger when training data is poisoned, whereas for calibration attacks our
method offers stronger guarantees against size attacks. Notably, even under strong adversarial con-
ditions where both datasets can be poisoned we still provide non-trivial reliability guarantees.

(a) Reliability of majority prediction sets under calibration poisoning. Majority prediction sets
demonstrate strong reliability guarantees against calibration set poisoning in empirical evaluations
(Figure 2 a). Specifically, we construct majority prediction sets by merging kc=22 homogeneous
prediction sets, each calibrated on separate calibration partitions, resulting in an empirical coverage
of 90.6% and an average set size of 0.95. When up to rc=4 datapoints in the calibration set are
poisoned, our method guarantees that over 97% of the prediction sets remain reliable against worst-
case coverage attacks. The guarantees against set size attacks are even stronger: Even if rc=17
datapoints are poisoned we still guarantee that over 79% of the prediction sets remain size reliable.

(b) Reliability of smoothed score function under training poisoning. The setting of training
set poisoning is considerably more challenging since adversaries can simultaneously manipulate the
quantiles during calibration and the scores at inference. We compute conformal prediction sets using
our smoothed score function on kt=100 training partitions, resulting in empirical coverage of 90.6%
and average set size of 3.3 (Figure 2 b). Despite strong adversaries, our reliable prediction sets still
manage to provide non-trivial reliability guarantees under worst-case perturbations. Specifically,
when up to rt = 5 datapoints in the training set are poisoned, our method guarantees that over 25%
of the prediction sets remain reliable against worst-case coverage attacks.
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(c) Reliability of RPS under training and calibration poisoning. By far the most challenging set-
ting constitute adversaries that manipulate both training and calibration data. We compute majority
prediction sets using our smoothed score function on kt=100 training partitions and kc=40 calibra-
tion partitions, resulting in empirical coverage of 92.3% and average set size of 3.6 (Figure 2 c).
Notably, under poisoning of up to rt = 3 training and rc = 3 calibration points, our method still
guarantees that over 23% of the prediction sets remain reliable against worst-case coverage attacks.
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Figure 3: Average set size and empirical coverage in all three different experiment settings (a–c).
Notably, our reliable prediction sets yield valid coverage guarantees without becoming too large.

Average prediction set size. In Figure 3 (top row) we study the average set size for varying numbers
of partitions. Notably, our majority prediction sets yield strong guarantees (Figure 2 a) without any
significant increase in size (Figure 3 a): the average prediction set size remains below 1, which
even holds for kc=40 (α=0.1). Interestingly, the size slowly increases with more training partitions,
creating a tade-off between reliability and utility of the prediction sets. Practitioners have to fine-tune
this trade-off depending on the application’s sensitivity towards reliability. Overall, we empirically
find that our reliable prediction sets do not become too large in size (Desideratum II).

Note that the set size increases when using only kt=2, 3 training partitions (spikes in the plots).
This happens because a sufficient number of classifiers is needed to achieve consistent consensus in
practice. However, our analysis also shows that five classifiers are already sufficient to prevent ex-
cessively large prediction sets. Finally, we also study the sizes on different datasets under calibration
poisoning (setting (a)): On CIFAR100 the average set size remains around 4 for kc ≤ 25, demon-
strating that our majority prediction sets scale well to datasets with more classes (Figure 4 (1)).

Coverage guarantees. In Figure 3 (bottom row) we empirically validate the coverage guarantee
(Theorem 2) on clean data. We observe that empirical coverage matches the desired coverage prob-
ability 1−α closely on average (Desideratum I), confirming our theoretical statements. We observe
overcoverage for small numbers of training partitions, which can be explained by our previous find-
ing that a minimum number of classifier is needed to achieve consistent consensus in practice.

Softmax ablation study. We found that smoothing the voting function with a softmax (Section 5)
avoids overly large prediction sets and overcoverage in practice. To demonstrate this we conduct
an experiment (Figure 4 (2,3)) for varying numbers of training partitions kt, where we compare
conformal prediction with our smoothed score function s against using the voting function π only.

Computational efficiency. Training the classifiers takes most of the time (statistics in Appendix A).
Note, however, that while having to train more classifiers, each one is trained on a subset of the
training data, which can speed up the training process. Inference with the ResNet18 models takes
between 4 and 10 seconds on CIFAR10. Constructing the conformal prediction sets takes at most
0.5 seconds for the entire test set. Computing certificates for majority prediction sets takes less than
a second, and around one minute when computing guarantees under training and calibration poison-
ing. Overall, we found that reliable prediction sets are computationally efficient (Desideratum V).
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Figure 4: (1): Average prediction set size of majority prediction sets across three different datasets.
(2,3): Softmax ablation study for empirically justifying smoothing of the voting function (α = 0.05).

8 DISCUSSION

Reproducible prediction sets. Score functions in the literature are not just unreliable but some also
depend on randomization to break ties (Romano et al., 2020). While randomization at inference
changes prediction sets by at most one class (Angelopoulos et al., 2021), different prediction sets
for the same input may not be desirable from a reliability standpoint, violating Desideratum V. For
example, a differential diagnosis for two patients with identical health should not yield different
results. As a remedy, we propose to make randomized score functions reproducible (Appendix C).

Limitations. Although RPS computationally scales to larger settings, training on subsets of larger
datasets such as CIFAR100 or ImageNet comes with accuracy loss, which also affects the utility of
our smoothed score function (details in Appendix B). This accuracy loss is an open challenge in the
general certifiably robust classification literature and beyond the scope of this paper.

Minimal calibration set size for majority prediction sets. Recall that Desideratum VI requires
that the reliability of prediction sets must increase for larger calibration sets. Our majority prediction
sets fulfill this desideratum by construction since increasing the number partitions kc will decrease
the influence of datapoints. However, we need enough data to construct our prediction sets: due to
the finite-sample correction, the calibration partitions cannot become arbitrarily small (Section 6).
If the hashing function would distribute all calibration images into equally-sized partitions of size
n/kc, we would need at least n ≥ kc

(
1
α − 1

)
calibration points in total (Proof in Appendix D).

Notably, this relationship is linear: given a fixed coverage probability 1−α, increasing the calibration
partitions by a factor of k only requires k-times larger calibration sets, which is realistic for all
commonly used image classification datasets and coverage probabilities used in the literature.

Training poisoning discussion. Note that as long as adversaries only know that the calibration
set is any dataset exchangeable with the test data, they cannot compromise the coverage guarantee
(Theorem 1) by poisoning training sets. This holds because conformal scores are computed using a
fixed classifier (post-training). However in practice, worst-case adversaries may know the calibration
set during training poisoning. Furthermore, even without access to the calibration data, adversaries
can still attack the prediction set size: For example, adversaries can manipulate the training process
to degrade the performance of the score function, leading to excessively large prediction sets. This
underscores again the need to ensure coverage and size reliability as defined in Definition 1.

9 CONCLUSION

We introduce reliable prediction sets (RPS), a novel method designed to improve reliability of
conformal prediction in the presence of data poisoning and label flipping attacks. By leveraging
smoothed score functions and a majority voting mechanism, RPS effectively mitigates the influence
of adversarial perturbations during both training and calibration. We provide theoretical guarantees
that RPS maintains stability under worst-case data poisoning, and demonstrate the effectiveness of
our approach on image classification tasks. Overall, our approach represents an important contri-
bution towards more reliable uncertainty quantification in practice, fostering the trustworthiness in
real-world scenarios where data integrity cannot be guaranteed.
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APPENDIX OVERVIEW

In this appendix we provide additional results, details on our experimental setup and prove theoreti-
cal results as outlined in the following:

A Full experimental setup and reproducibility details 14

B Additional results for reliable prediction sets 14

C Reproducible prediction sets 18

D Proofs for reliable prediction sets (Section 5) 18

E Proofs for reliability certificates (Section 6) 20

13



Under review.

A FULL EXPERIMENTAL SETUP AND REPRODUCIBILITY DETAILS

We provide details on the experimental setup to ensure reproducibility of our results.

Datasets. The datasets we use for evaluation are described in Section 7 (SVHN (Netzer et al., 2011),
CIFAR10 and CIFAR100 (Krizhevsky et al., 2009)) and are publicly available. We use the torchvi-
sion library to load the datasets.1 We normalize images before training, and we compute dataset
mean and standard deviation on each training partition separately to ensure models are trained on
isolated partitions, which is required by our method to improve reliability.

Training details. We train all models with stochastic gradient descent (learning rate 0.01, momen-
tum 0.9, weight decay 5e-4) for 400 epochs using early stopping if the training accuracy does not
improve for 100 epochs. We further deploy a cosine learning rate scheduler (Loshchilov & Hutter,
2017). We use a batch-size of 128 during training and 300 at inference. To ensure that our guar-
antees against training-poisoning hold we require that the training process is deterministic, which
not only involves fixing the random seed for data augmentation but also ensuring that the training
processes are deterministic.

Image preprocessing. We determine dataset-wide mean and standard deviation dynamically on ev-
ery training set partition separately once before training to ensure that each classifier is trained on
an isolated partition. We subsequently normalize all images in one partition with the corresponding
values. We also augment the training set with random crops (padding of 4 pixels) and random hori-
zontal flips (but we perform the data augmentation in a deterministic, reproducible way across runs).

Hardware details. We train ResNet18 models on a NVIDIA GTX 1080TI GPU, and the ResNet50
and ResNet101 models on a NVIDIA A100 40GB. We perform inference of all models on a NVIDIA
GTX 1080TI GPU, and compute certificates on a Xeon E5-2630 v4 CPU.

Reproducibility. To ensure reproducibility we use random seeds for all randomized functions, this
especially includes the dataset preprocessing, model training and calibration splits. We will publish
source code along with reproducibility instructions and all random seeds.

Training time details. The runtime statistics for training ResNet18 models on CIFAR-10 and
SVHN are as follows. Training a single ResNet18 model on CIFAR-10 takes 2.2 hours, while
training 100 models requires a total of 21.7 hours, with each individual model taking approximately
2.6 minutes. For SVHN, a single ResNet18 model takes 5.6 hours to train, and training 100 models
requires a total of 30 hours, with each model training taking around 3.5 minutes.

B ADDITIONAL RESULTS FOR RELIABLE PREDICTION SETS

In this section, we expand on the experimental results by providing further analyses and comple-
mentary information. Figure 5 shows the worst-case reliability guarantees for the SVHN dataset
under the three different poisoning scenarios (in the same settings as described in the main paper).
We again observe that our method provides reliable prediction sets even under worst-case poison-
ing attacks. Complementary to the main section, Figure 6 shows the average set size and empirical
coverage in all three different experiment settings (a–c) on the SVHN dataset.

Figure 7 (1) shows the average set sizes of the three different architectures (ResNet18, ResNet50,
ResNet101) on the CIFAR10 dataset when using majority vote prediction sets with the smoothed
score function (third experimental setting). Interestingly, using the ResNet18 model yields the best
results, which we attribute to the fact that models trained on subsets of the training set require less
capacity to learn the data distribution, and small models prevent overfitting. Figure 7 (2,3) show the
softmax ablation study for empirically justifying the smoothing of the voting function for α = 0.1.

We also provide additional results for our reliable prediction sets for the following evaluation met-
rics: (1) the ratio of empty sets, (2) the ratio of full sets, (3) the singleton ratio (ratio of sets contain-
ing a single class), and (4) the singleton hit ratio (empirical coverage of singleton prediction sets).
Figure 9 shows results for the CIFAR10 dataset, and Figure 10 shows results for the SVHN dataset,
for all three evaluation settings (a-c) described in Section 5.

1https://pytorch.org/vision/stable/index.html
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Figure 5: SVHN: Worst-case reliability guarantees across three scenarios: (a) poisoning of the
calibration data, (b) poisoning of the training data, and (c) poisoning of both datasets.
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Figure 6: Avg. size and empirical coverage in all three settings (a–c) on the SVHN dataset.
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Figure 7: (1): Different models on CIFAR10. (2,3): Softmax ablation study for empirically justify-
ing smoothing of the voting function (here with α = 0.1) on CIFAR10.

In the main plots in Section 7, we only considered the diagonal rt = rc for the reliability ratios. In
Figure 8, we show the reliability ratios for coverage reliability, size reliability, and robustness for all
combinations of rt and rc for the CIFAR10 dataset (kt = 100, kc = 40, α = 0.1). Interestingly, the
reliability ratios are generally higher for larger rc, which indicates that the majority prediction sets
are more reliable when calibration data is poisoned.

As mentioned in Section 8, training on subsets of larger datasets such as CIFAR100 or ImageNet
comes with accuracy loss, which affects the utility of our smoothed score function. Specifically,
when splitting the training set of CIFAR100 into 10 partitions only, each individual classifier
achieves an accuracy of approximately 30% (in contrast to at least 70% when trained on the entire
dataset). This affects the performance of our smoothed score function, leading to overly excessive
prediction sets. Future learning algorithms could further improve the performance when training on
subsets of larger datasets, ultimately boosting robustness and reliability in machine learning.
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Figure 8: CIFAR10, kt = 100, kc = 40, α = 0.1, (1): Coverage reliability ratio, (2): Size reliability
ratio, (3): Robust ratio. Here with all radii combinations (and not just the diagonal, rt = rc).
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Figure 9: Various metrics for RPS in the three experiment settings (a-c) for ResNet18 on CIFAR10.
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Figure 10: Various metrics for RPS in the three experiment settings (a-c) for ResNet18 on SVHN.
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C REPRODUCIBLE PREDICTION SETS

There are conformal score functions that rely on random variables, e.g. for ensuring exact coverage
by breaking ties. For example, adaptive prediction sets (APS) sum over class probabilities of classes
with probability at least fy(x): s(x, u, y)=−(

∑K
i=1 fi(x)1[fi(x)>fy(x)]+ufy(x)). Conformal

prediction sets are then formed by C(xn+1) = {s(xn+1, un+1, y) ≥ τ}, where un+1 ∈ [0, 1] is a
uniform random variable (Romano et al., 2020).

Although randomization at inference changes prediction sets by at most one class (Angelopoulos
et al., 2021), generating different prediction sets for the same input may not be desirable from a
reliability standpoint and violates Desideratum V. For example, a differential diagnosis for two pa-
tients with identical health parameters should not yield different results. As a solution we propose
reproducible score functions: Instead of drawing from a random variable, we propose to compute
pseudorandom numbers by hashing the sum of the image’s pixel values and initialize the pseudo-
random number with the hash. We found that this is enough to break ties in practice while ensuring
determinism required by our reliability guarantees. Note that our score functions with pseudo-
randomization are valid since they maintain exchangeability as the numbers depend solely on the
data itself (not its position in the dataset or other datapoints).

We analyze this in Figure 11: Without randomization APS results in large set sizes (2) despite tight
coverage (1). With randomization the sets shrink in size, but are not reproducible. With pseudo-
randomization, APS is reproducible with tight coverage and small prediction sets.
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Figure 11: Comparing APS without and with randomization against our reproducible version.

D PROOFS FOR RELIABLE PREDICTION SETS (SECTION 5)

Recall the definition of the majority prediction sets from Section 5:

CM (xn+1) =

{
y :

kc∑
i=1

1{y ∈ Ci(xn+1)} > τ̂

}
with τ̂=max {x ∈ [kc] : F (x) ≤ α}, where F is the CDF of the Binomial distribution Bin(kc, 1−α)
and [kc] = {0, . . . , kc}. Note that by assumption the sets Ci(xn+1) are independent. We show the
following result:

Theorem 2. Given coverage probability 1−α∈ (0, 1), test sample (xn+1, yn+1)∈Dtest, and a
conformal score function s, the majority prediction set (Equation 3) constructed on a calibration
set of independent datapoints achieves marginal coverage on clean data:

Pr[yn+1 ∈ CM (xn+1)] ≥ 1− α (6)

Proof. Define the event ϕi = 1{yn+1 ∈ Ci(xn+1)}. Note that yn+1 is fixed and the events ϕi and ϕj

are independent for i ̸= j since the prediction sets Ci and Cj are constructed on disjoint partitions in a
calibration set of independent datapoints. Therefore ϕi are independent Bernoulli random variables
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with pi = Pr[ϕi = 1] ≥ 1− α by construction. Further define the random variable

Skc =

kc∑
i=1

1{y ∈ Ci(xn+1)} .

First we consider the special case pi = 1− α for all i. Then Skc
=

∑kc

i=1 ϕi is a Binomial random
variable, Skc

∼ Bin(kc, 1− α). Thus we have:

Pr[yn+1 ∈ CM (xn+1)] = Pr

[
kc∑
i=1

1{yn+1 ∈ Ci(xn+1)} > τ̂

]
(7)

= Pr [Skc
> τ̂ ] (8)

= 1− Pr [Skc
≤ τ̂ ] (9)

= 1− F (τ̂)︸ ︷︷ ︸
≤α

(10)

≥ 1− α (11)

In the general case of pi ≥ 1 − α we have that Skc
is distributed as a Poisson binomial random

variable, Skc
∼ PB(kc, [p1, . . . , pkc

]). However, it holds that
∏kc

i=1 pi > (1− α)kc , which implies
that the Poisson binomial distribution is stochastically larger than the Binomial distribution (Boland
et al., 2002; Tang & Tang, 2023). See details in (Gasparin & Ramdas, 2024). Intuitively, this means
that the probability Pr [Skc

> τ̂ ] can only increase in the general case where pi ≥ 1− α.

Discussion. Notably, Gasparin & Ramdas (2024) merge uncertainty sets with a similar majority vote
but they define the threshold in their majority prediction set as q = sup{x ∈ R : F (x) ≤ α} instead
of τ̂ = max{x ∈ [kc] : F (x) ≤ α}. However, clearly we have F (q) > α due to the definition of
the supremum and the definition of the binomial CDF:

F (x; kc, 1− α) =

⌊x⌋∑
i=0

(
kc
i

)
(1− α)iαkc−i

This means q = τ̂ + 1, which leads to smaller majority prediction sets which violate the coverage
guarantee since Pr[Skc

> q] < 1− α due to F (q) > α.

Minimal calibration set size for majority prediction sets. Recall that desideratum VI (Section 4)
requires that the reliability of prediction sets must increase for larger calibration sets. Our majority
prediction sets fulfill this desideratum by construction since increasing the number partitions kc will
decrease the influence of datapoints. However, we need enough data to construct prediction sets:
due to the finite-sample correction, the calibration partitions cannot become arbitrarily small. This
naturally bounds the number of partitions kc for a fixed calibration size n (and thus reliability):

Proposition 1. Let i∗ = argmini∈{1,...,kc} |P c
i | denote the partition of smallest size. Given cover-

age probability 1−α, we can construct prediction sets for partition i provided that |P c
i∗ | ≥ ( 1

α −1).

Proof. In general, constructing prediction sets given n calibration points requires, due to the finite
sample correction that ⌈(n+1)(1−α)⌉

n ≤ 1 holds (otherwise we cannot compute quantiles). We have:

⌈(n+ 1)(1− α)⌉
n

≤ 1

⇔ ⌈(n+ 1)(1− α)⌉ ≤ n

(1)⇔ (n+ 1)(1− α) ≤ n

⇔ 1− α ≤ n

n+ 1
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where (1) holds since n is a natural number, n ∈ N. We further have n
n+1 = n

n
1

1+ 1
n

= 1
1+ 1

n

, thus:

1− α ≤ n

n+ 1
⇔ 1− α ≤ 1

1 + 1
n

⇔ 1 +
1

n
≤ 1

1− α

⇔ 1

n
≤ 1

1− α
− 1

⇔ n ≥ 1
1

1−α − 1

We further have
1

1
1−α − 1

=
1

1−(1−α)
1−α

=
1− α

α
=

1

α
− 1.

Thus we need n ≥ 1
α − 1 datapoints in our calibration set. If we partition the calibration data into k

equally-sizes subsets of size n
k , then we need at least n ≥ k

(
1
α − 1

)
datapoints. If the partitions are

not equally-sized, then we require for the smallest partition i∗ that |P c
i∗ | ≥ ( 1

α − 1) holds.

If the hashing function would distribute all calibration images into equally-sized partitions of size
n/kc, we would need at least n ≥ kc

(
1
α − 1

)
calibration points in total. Notably this relationship

is linear: given a fixed coverage probability 1 − α, increasing the calibration partitions by a factor
of k only requires k-times larger calibration sets, which is realistic for all commonly used image
classification datasets and coverage probabilities used in the literature.

E PROOFS FOR RELIABILITY CERTIFICATES (SECTION 6)

Algorithm 3 Greedy algorithm for upper bounding the
smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: ŷ = argmaxŷ ̸=y πŷ

4: πŷ ← min(max(πŷ − 1/kt, 0), 1)
5: πy ← min(max(πy + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Algorithm 4 Greedy algorithm for lower bounding the
smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: if πy = 0 then
4: y′ ← y
5: else
6: y′ ← argminy′:πy′>0 πy′

7: πy′ ← min(max(πy′ − 1/kt, 0), 1)
8: ŷ = argmaxŷ ̸=y πŷ

9: πŷ ← min(max(πŷ + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Let C(xn+1)={y ∈ Y : s(xn+1, y) ≥ τ} be a prediction set for a new test point xn+1 derived using
conformal prediction (Section 3) under the clean datasetDl and with the smoothed score function s.

Lemma 2. We can upper bound the score function for any D̃l ∈ Brt,rc(Dl) as follows:

s(x, y) = max
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (12)

Proof. Since adversaries can insert or delete at most rt datapoints, we know at most rt training
partitions can be affected in the worst-case. Thus at most rt of kt classifiers change their prediction.
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Equivalently for the lower bound:

s(x, y) = min
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (13)

Proposition 3. Algorithm 3 and Algorithm 4 solve the discrete optimization problems in Equation 12
and Equation 13, respectively. The optimal solutions represent the worst-case bounds on the score
function s under any poisoned dataset D̃l ∈ Brt,rc(Dl).

Proof. In the worst-case, the adversary controls at most rt partitions, which means the adversary
controls the predictions of at most rt classifiers and can consequently change at most rt

kt
probability

mass in the vote-distribution π over classes Y , which is exactly what the two optimization problems
model. We now distinguish between the two cases:

• For the upper bound s(x, y), the worst-case adversary redistributes the probability mass
from the classes with the largest probability masses to the target class y, which is the
worst-case upper bound since it maximizes the numerator and minimizes the denominator.

• For the lower bound s(x, y), the worst-case adversary redistributes the probability mass
from the target class to the class with the largest probability mass. If the target class has
0 remaining probability mass, then the probability from the smallest class with probability
mass larger 0 is redistributed to the class with most of the probability mass. This is the
worst-case lower bound since it minimizes the numerator and maximizes the denominator.

The argument holds since πi(x) ∈ {0, 1
kt
, . . . , kt−1

kt
, 1}. Both worst-cases are exactly what the

Algorithms in Algorithm 3 and Algorithm 4 compute.

Clearly, both greedy algorithms need rt iterations to terminate (due to the for loop).
Theorem 3. Given rc=0, the conformal prediction set C̃(xn+1) derived with the smoothed score
function under any poisoned dataset D̃l∈Brt,rc(Dl) is coverage reliable, i.e. C̃(xn+1) ⊇ C(xn+1),
if s

(
x, y

)
≥ τ , and size reliable, i.e. C̃(xn+1) ⊆ C(xn+1), if s (x, y) < τ .

Proof. We consider training set poisoning. In the worst case, adversaries perturb at most rt training
partitions. Thus, the worst-case quantiles are given by:

τ = Quant(αn; {zi}ni=1) τ = Quant(αn; {zi}ni=1)

where zi = s(xi, yi) and zi = s(xi, yi) are lower and upper bounds on the scores for all points
(xi, yi) ∈ Dcalib in the calibration set. We treat coverage and size reliability separately:

Coverage reliability: We consider a prediction set as coverage reliable if no class can be removed
from the set. If adversaries cannot remove the “weakest” class y with the fewest votes πy among all
classes y ∈ C(xn+1) from the prediction set, then adversaries also cannot remove any other class
since they would need even more adversarial budget. In the worst-case, the lowest score for sample x
and class y is given by s

(
x, y

)
. Thus, if this lowest score is still larger than or equal to the worst-case

quantile τ , then the weakest class cannot be removed and the prediction set is coverage reliable.

Size reliability: We consider a prediction set as size reliable if no class can be added to the set. If
adversaries cannot add the “strongest” class y with the most votes πy among all classes y /∈ C(xn+1)
into the prediction set, then adversaries also cannot add any other class since they would need even
more adversarial budget. In the worst-case, the largest score for sample x and class y is given by
s (x, y). Thus, if this largest score is still smaller than the worst-case quantile τ , then the strongest
class cannot be added and the prediction set is size reliable.

Theorem 4. Given rt=0 and deterministic score function s, the majority prediction set C̃M (xn+1)

derived under any dataset D̃l ∈ Brt,rc(Dl) is coverage reliable, i.e. C̃M (xn+1) ⊇ CM (xn+1), if
m − rc > τ̂ , and size reliable, i.e. C̃M (xn+1) ⊆ CM (xn+1), if m + rc ≤ τ̂ , provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).
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Proof. Recall the definitions:

m = min
y∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)} m = max
y/∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)}

We consider calibration set poisoning. We again treat coverage and size reliability separately:

Coverage reliability: In the worst-case, adversaries control at most rc calibration partitions and
thus can change the support

∑kc

i=1 1{y ∈ Ci(xn+1)} for classes y ∈ CM (xn+1) by at most rc. If
removing rc from the support of the class with the least support m is not enough to remove the class,
m− rc > τ̂ , then the majority prediction set remains coverage reliable.

Size reliability: In the worst-case, adversaries control at most rc calibration partitions and thus can
change the support

∑kc

i=1 1{y ∈ Ci(xn+1)} for classes y /∈ CM (xn+1) by at most rc. If adding rc
to the support of the class with the most support m is not enough to add the class, m+ rc ≤ τ̂ , then
the majority prediction set remains size reliable.

This only holds if the smallest calibration partition i∗ is large enough |P c
i∗ | − rc ≥ ( 1

α − 1) under an
attack, otherwise the adversary could prevent us from computing the majority prediction set in the
first place by deleting datapoints from partition i∗.

Theorem 5. Let βy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc
} for which we can

guarantee y ∈ Ci under rt poisoned training datapoints. If βy − rc > τ̂ for all y ∈ CM (xn+1) then
the majority prediction set is coverage reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that
the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Proof. If there is a single class y ∈ CM (xn+1) for which we cannot guarantee that more than τ̂
prediction sets contain y under rt poisoned training datapoints and rc poisoned calibration points,
then the majority prediction set is not coverage reliable in the worst-case. Showing βy − rc > τ̂ for
all y ∈ CM (xn+1) as explained in the main text is a sufficient condition for coverage reliability.

Theorem 6. Let γy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc
} for which we can

guarantee y ̸∈ Ci under rt poisoned training datapoints. If kc − γy + rc ≤ τ for all y /∈ CM (xn+1)

then the majority prediction set is size reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Proof. If there is a single class y /∈ CM (xn+1) for which we cannot guarantee that less than (or equal
to) τ̂ prediction sets do not contain y under rt poisoned training points and rc poisoned calibration
points, then the majority prediction set is not size reliable in the worst-case. If γy denotes the number
of prediction sets for which we can guarantee y ̸∈ Ci under rt poisoned training datapoints, then
kc − γy is the number of prediction sets for which we cannot guarantee y /∈ Ci (this entails the
number of prediction sets with y ∈ Ci). Under consideration of additional calibration poisoning, we
cannot guarantee y /∈ Ci for kc − γy + rc prediction sets. In the worst case, kc − γy + rc prediction
sets will contain the class. In other words, kc − γy + rc ≤ τ for all y /∈ CM (xn+1) is a sufficient
condition for size reliability.

Computational complexity. For the training-poisoning certificates we have to compute the algo-
rithm for all n calibration points. Assuming we recompute the argmax every time, the certificates can
be computed in O(nrtK) (where K is the number of classes). Regarding our calibration-poisoning
certificates, the terms m,m can be computed efficiently inO(Kkc) steps. To compute guarantees in
the general case, we mainly need to compute the terms βy and γy for all K classes y ∈ Y . This in-
volves computing the worst-case quantiles (O( n

kc
rtK)) for each prediction set kc and the worst-case

score (O(rtK)). Thus overall the guarantees can be computed in O(Kkc(
n
kc
rtK)) = O(K2nrt).
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