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tl;dr: Novel robustness certificates for decomposable data

- Adversaries can perturb a subset of all entities of an object
(e.g. pixels of an image, nodes of a graph)

- We propose a highly flexible certification framework for
continuous and discrete domains

- Superior robustness-accuracy trade-offs under our threat model

Context

- Machine learning models are susceptible to adversarial perturbations
- Robustness certificates provide provable robustness guarantees

Problem

Certifying robustness on decomposable data (e.g. images, graphs, ...)
is challenging when adversarial perturbations are bounded by both:
(1) the number of perturbed entities r, and (2) perturbation strength €
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How can we guarantee robustness under such
adversarial perturbations?

Existing approaches sacrifice robustness over accuracy or vice versa

Background: Randomized smoothing

- Sample smoothed images X; ~ ¢(X) from smoothing distribution ¢
- Classify them with base classifier f and certify the majority vote

p(X3)

p(X1)

majority vote: gX)=y"

How to certify robustness under randomized smoothing?
- Derive lower bound pz ,,«(px ) on probability p; .+ to classify X as y*

- Smoothed classifier g is certifiably robust if
Pz, y*(Pxy*) > 0.5 for any perturbed X € B(X)
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Hierarchical smoothing distribution

1. Upper-level smoothing: Sample indicator 7; ~ Ber(p) with probability p
2. Lower-level smoothing u: Sample additive noise for indicated entities only

Graph data

Image data
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How to certify robustness?

- Append indicator 7 to the object X
- Construct a new base classifier f operating on this higher-dimensional space

Image data Graph data
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Certify robustness by reusing existing bounds

1. Compute constant A = 1 — p" for selection probability p and radius r
2. Plug A into existing lower bound px ,+(px,~) for the lower-level distribution

Why can we integrate robustness guarantees
for the lower-level smoothing distribution?

- Partition the sample space into disjoint regions Ry, R{, R5, R

- Supports Sy and Sy for hierarchical smoothing around X and X intersect only
for samples where all perturbed entities are selected by 7 (Region R,)

- This allows the certificate to separate clean from perturbed entities
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Experimental evaluation
Certificate captures robustness w.r.t. both radii r and ¢
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We expand the Pareto-front w.r.t. robustness and accuracy

Image classification
- Perturbation strength bounded under £,-norm (r = 3,e = 0.35)

- Hierarchical smoothing with Gaussian smoothing
- Smoothed ResNet50 on CIFAR10

Certified ACC (%)

* Hierarchical smoothing
e Gaussian smoothing (Cohen et al., 2019)
e Ablation smoothing (Levine et al., 2020)

Node classification

- Sparse attribute perturbations (r = 1,7, = 0,r; = 40)
- Hierarchical smoothing with sparse smoothing

- Smoothed GAT on CoraML
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* Hierarchical smoothing
e Sparse smoothing (Bojchevski et al., 2020)
e Interception smoothing (Scholten et al., 2022)
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