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tl;dr: Novel robustness certificates for decomposable data
- Adversaries can perturb a subset of all entities of an object 

(e.g. pixels of an image, nodes of a graph)
- We propose a highly flexible certification framework for 

continuous and discrete domains
- Superior robustness-accuracy trade-offs under our threat model

Context

Hierarchical smoothing distribution Experimental evaluation

Image classification
- Perturbation strength bounded under ℓ"-norm (𝑟 = 3, 𝜖 = 0.35)
- Hierarchical smoothing with Gaussian smoothing
- Smoothed ResNet50 on CIFAR10
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Why can we integrate robustness guarantees 
for the lower-level smoothing distribution?

- Machine learning models are susceptible to adversarial perturbations

𝑓 𝑋 = “𝑑𝑜𝑔”

+

𝑟, 𝜖

=

𝑓 ,𝑋 = “𝑐𝑎𝑡”

How to certify robustness?

Background: Randomized smoothing

1. Upper-level smoothing: Sample indicator	𝝉! 	~	𝐵𝑒𝑟(𝑝) with probability p
2. Lower-level smoothing 𝜇: Sample additive noise for indicated entities only

- Append indicator 𝝉 to the object 𝑿
- Construct a new base classifier 𝑓 operating on this higher-dimensional space

Certify robustness by reusing existing bounds

1. 𝝉#	~	𝐵𝑒𝑟(𝑝) 2. 𝑾	~	𝜇𝑿(𝑾|𝝉) 

- Sample smoothed images 𝑋! 	~	𝜙(𝑋) from smoothing distribution 𝜙
- Classify them with base classifier 𝑓 and certify the majority vote

Image 𝑋

majority vote: 𝑔(𝑋)	=	𝑦∗

𝑝 𝑋% 𝑝 𝑋" 𝑝 𝑋&

𝑦∗ 𝑦∗8𝑦

…

- Robustness certificates provide provable robustness guarantees

Certifying robustness on decomposable data (e.g. images, graphs, …) 
is challenging when adversarial perturbations are bounded by both: 
(1) the number of perturbed entities 𝑟, and (2) perturbation strength 𝜖

How can we guarantee robustness under such 
adversarial perturbations?

𝑝 "#,	&∗(𝑝#,&∗) > 0.5 for any perturbed ,𝑋 ∈ ℬ(𝑋)

- Derive lower bound 𝑝 "#,	&∗(𝑝#,&∗) on probability 𝑝 "#,	&∗ to classify ,𝑋 as	𝑦∗

- Smoothed classifier 𝑔	is certifiably robust if
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How to certify robustness under randomized smoothing?

Existing approaches sacrifice robustness over accuracy or vice versa

Problem

1. 𝝉#	~	𝐵𝑒𝑟(𝑝)

1. 𝝉#	~	𝐵𝑒𝑟(𝑝)

Image data Graph data

1. Compute constant Δ = 1 − 𝑝(  for selection probability 𝑝 and radius 𝑟
2. Plug Δ into existing lower bound 𝑝 '(,	+∗(𝑝(,+∗) for the lower-level distribution 

Image data Graph data

1. 𝝉#	~	𝐵𝑒𝑟(𝑝) 2. 𝑾	~	𝜇𝑿(𝑾|𝝉) 

Certificate captures robustness w.r.t. both radii 𝑟 and 𝜖

Node classification
- Sparse attribute perturbations (𝑟 = 1, 𝑟, = 0, 𝑟- = 40)
- Hierarchical smoothing with sparse smoothing
- Smoothed GAT on CoraML

Paper, code, and moreR0
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- Partition the sample space into disjoint regions 𝑅), 𝑅*, 𝑅+, 𝑅,
- Supports 𝑆# and 𝑆 "# for hierarchical smoothing around 𝑋 and ,𝑋 intersect only 
  for samples where all perturbed entities are selected by 𝝉 (Region 𝑅+)
- This allows the certificate to separate clean from perturbed entities

We expand the Pareto-front w.r.t. robustness and accuracy

𝑝 𝑓 𝜙 𝑋 = 𝑦

𝑝(,+∗

2. 𝑾	~	𝜇𝑿(𝑾|𝝉) 
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