Data Analytics and Machine Learning Group **Department of Computer Science** Technical University of Munich

tl;dr: Novel robustness certificates for decomposable data

- Adversaries can perturb a subset of all entities of an object (e.g. pixels of an image, nodes of a graph)
- We propose a highly flexible certification framework for continuous and discrete domains
- Superior robustness-accuracy trade-offs under our threat model

Context

- Machine learning models are susceptible to adversarial perturbations

- Robustness certificates provide provable robustness guarantees

Problem

Certifying robustness on decomposable data (e.g. images, graphs, ...) is challenging when adversarial perturbations are bounded by both: (1) the number of perturbed entities r, and (2) perturbation strength ϵ

How can we guarantee robustness under such adversarial perturbations?

Existing approaches sacrifice robustness over accuracy or vice versa

Background: Randomized smoothing

- Sample smoothed images $X_i \sim \phi(X)$ from smoothing distribution ϕ
- Classify them with base classifier *f* and certify the majority vote

majority vote: $g(X) = y^*$

How to certify robustness under randomized smoothing?

- Derive lower bound $p_{ ilde{X}, y^*}(p_{X,y^*})$ on probability $p_{ ilde{X}, y^*}$ to classify $ilde{X}$ as y^*
- Smoothed classifier g is certifiably robust if
 - $p_{\tilde{X}, y^*}(p_{X,y^*}) > 0.5$ for any perturbed $\tilde{X} \in \mathcal{B}(X)$

Hierarchical Randomized Smoothing

Yan Scholten¹ Jan Schuchardt¹ Aleksandar Bojchevski² Stephan Günnemann¹ ¹Technical University of Munich ²University of Cologne

Hierarchical smoothing distribution

- 1. Upper-level smoothing: Sample indicator $\tau_i \sim Ber(p)$ with probability p
- 2. Lower-level smoothing μ : Sample additive noise for indicated entities only

Image data

2. $W \sim \mu_X(W|\tau)$

How to certify robustness?

- Append indicator au to the object X
- Construct a new base classifier f operating on this higher-dimensional space

Image data

2. $W \sim \mu_X(W|\tau)$

Certify robustness by reusing existing bounds

1. Compute constant $\Delta = 1 - p^r$ for selection probability p and radius r

Why can we integrate robustness guarantees for the lower-level smoothing distribution?

- Partition the sample space into disjoint regions R_0, R_1, R_2, R_3
- Supports S_X and $S_{\tilde{X}}$ for hierarchical smoothing around X and \tilde{X} intersect only for samples where all perturbed entities are selected by τ (Region R_2)
- This allows the certificate to separate clean from perturbed entities

2. Plug Δ into existing lower bound $p_{\tilde{X}, y^*}(p_{X,y^*})$ for the lower-level distribution

Experimental evaluation

We expand the Pareto-front w.r.t. robustness and accuracy Image classification

Zuse Schools Konrad Zuse Schools of Excellence in Artificial Intelligence

Certificate captures robustness w.r.t. both radii r **and** ϵ

- Perturbation strength bounded under ℓ_2 -norm ($r = 3, \epsilon = 0.35$) - Hierarchical smoothing with Gaussian smoothing

SPONSORED BY THE

Federal Ministry of Education and Research

10 December – 16 December, New Orleans (USA)